Wenxu ZHOU

Chinese, Simplified
Photo: 
Name: 
Wenxu ZHOU
Professor

 

个人简介

Wenxu Zhou教授

代谢物组方向负责人。在甾体化合物合成代谢和分子调控机理方面具有较深的造诣。在过去的20余年一直从事甾体化合物代谢与应用方面的研究,研究对象包括微生物(包括病原微生物)、微藻、植物、动物和人体,并参与开发了一系列针对甾体代谢调控的药物,用于植物、动物和人体疾病的治疗。曾担任德州理工大学(美国)和西澳大学(澳大利亚)化学生物学研究中心代谢物组平台负责人。在甾体化合物代谢调控方面在Science SignalPlant CellPlant PhysiologyJBCmSystems等发表过四十多篇学术论文。

 

Wenxu Zhou

Ph. D, Professor

State Key Laboratory of Marine Resources Utilization of South China Sea

Hainan University

Email: wxzhou@hainanu.edu.cn

 

  • Managing and operating the metabolomics facility including GC/MS HPLC/MS and CE.
  • Conducting research of metabolomics studies on Arabidopsis and soybean, including metabolite target analysis of sterols, fatty acids, amino acids, cuticle wax and metabolite profiling.
  • Sterol metabolism, its regulation and application.
  • Metabolomics of plant and algae under abiotic stresses.
  • Characterization of biomass for energy production.

 

工作经历

1989-1993 北京大学(医学院),助教

1994-1995 Tsukuba Research Laboratories, Eisai Co., Ltd.(日本),访问科学家

1995-1996 北京大学(医学院),讲师

1996-1997 德州理工大学(美国),访问学者

1997-2002 德州理工大学(美国),研究助理、助教

2002-2006 德州理工大学(美国),研究助理、主管

2005-2007 爱荷华州立大学(美国),代谢物组实验室副主任

2006-2015 西澳大学(澳大利亚),助理教授, 澳大利亚代谢物组平台 顾问

2016-2019 德州理工大学(美国) 副教授

1989年获得北京大学学士学位

1999年获得德州理工大学(美国)硕士学位

2002年获得德州理工大学(美国)博士学位

2002-2005  德州理工大学(美国),博士后

 

Research Experiences

2002          Ph.D. (Chemistry), Dept. of Chemistry and Biochemistry, Texas Tech University  Dissertation: Studies on the characterization of human sterol-8-isomerase and biosynthesis of sterols in Pneumocystis carinii.

 1999     M.S.  (Chemistry), Dept. of Chemistry and Biochemistry, Texas Tech University    Thesis: Studies on the purification and characterization of the (s)-adensyl-l-methionine sterol methyl transferase from Arabidopsis thaliana.

1989          B.S. (in pharmacy) Beijing Medical University (Medical Center of Beijing University), P.R. China. .

Thesis: Absorption kinetics of Ibuprofen.

2016-Present: Associate Professor Center for Chemical Biology Department of Chemistry and Biochemistry Texas Tech University

2007-2015 Assistant Professor ARC Centre of Excellence in Plant Energy Biology, Centre for Energy UWA.

2006-2007  Associate Manager of W. M. Keck Metabolomics Research Laboratory, Iowa State University.

2002-2006     Research Associate and Laboratory Manger, Biochemistry, Department of Chemistry and Biochemistry, Texas Tech University

1997-2002     Research Assistant and Teaching Assistant, Department of Chemistry and Biochemistry, Texas Tech University.

1996-1997     Visiting Scientist, Department of Chemistry and Biochemistry, Texas Tech University

    1. Lecturer, Department of Pharmacognosy, School of Pharmaceutical Science, Beijing Medical University, Beijing, China.
    1. Visiting Scientist, Tsukuba Research Laboratories,  Eisai Co., Ltd.(Japan) Japan.
    1. Research and Teaching Assistant, Department of Pharmacognosy, School of Pharmaceutical Science, Beijing Medical University, Beijing, China.
    1.  

 

 

Professional Societies

 

American Chemical Society

Metabolomics Society

 

代表性成果

Book Chapters

 

  1. Zhou W, Nguyen HT, Nes WD: Plant Sterol Methyltransferases: Phytosterolomic Analysis, Enzymology and Bioengineering Strategies. In “Advances inPlant Biochemistry and Molecular Biology” (2008)   

 

  1. Nes WD,  Zhou W. Terpenoids: Higher. In  “Encyclopedia of Life Sciences”, Nature Publishing Group, London (www.wls.net)  pp. 1-12 (1999)Nes, W. D. and Zhou, W-X. Terpenoids: Higher. In  “Encyclopedia of Life Sciences”, Nature Publishing Group, London (www.wls.net)  pp. 1-12 (1999) .

 

Invited Review

 

Zhou W, Song Z, Kanagasabai  R,  Liu J, Jayasimha P, Sinha A,  Veeramachanemi P,  Miller, MB, Nes WD:. Mechanism-based Enzyme Inactivators of Phytosterol Biosynthesis. Molecules (2004), 9(4), 185-203.

 

Selected publications

 

  1. Y Lu*, J Jiang, H Zhao, X Han, Y Xiang, W Zhou*. (2020) Clade-specific sterol metabolites in dinoflagellate endosymbionts are associated with coral bleaching in response to environmental cues. mSystems doi: 10.1128/mSystems.00765-20
  2. J Jiang#, A Wang#, X Deng, W Zhou, Q Gan, Y Lu*. (2021) How Symbiodinium meet the challenges of life during coral bleaching. Coral Reefs 10.1007/s00338-021-02115-9 (IF=3.5)
  3.   Kidane ME*, Vanderloop BH*, Zhou W*, Thomas CD, Ramos E, Singha U, et al. Sterol methyltransferase a target for anti-amoeba therapy: towards transition state analog and suicide substrate drug design. Journal of lipid research. 2017;58(12):2310-23. * Equal contribution as the first author.
  4. Gan Q*, Zhou W*, Wang S, Li X, Xie Z, Wang J, et al. A customized contamination controlling approach for culturing oleaginous Nannochloropsis oceanica. Algal Research. 2017;27:376-82. * Equal contribution as the first author.
  5. Zheng, C., Zhu, M., Zhou, W. & Zhang, D. A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF. Journal of Energy Resources Technology 139, 032905 (2017).
  6. Fisher PM, Zhou W, Miller MB, Shen Y, Shi H, Nes WD. Substrate Specificity and Unusual Reaction Mechanism of the Sterol 4-Methyltransferase in Caenorhabdtis elegans. The FASEB Journal. 2017;31(1 Supplement):629.22-.22.
  7. Debnath A, Calvet CM, Jennings G, Zhou W, Aksenov A, Luth MR, et al. CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS neglected tropical diseases. 2017;11(12):e0006104.
  8. Li J, Zhou W, Francisco P, Wong R, Zhang D, Smith SM. Inhibition of Arabidopsis chloroplast β-amylase BAM3 by maltotriose suggests a mechanism for the control of transitory leaf starch mobilisation. PloS one. 2017;12(2):e0172504.
  9. Reichwaldt ES, Ho WY, Zhou W, Ghadouani A. Sterols indicate water quality and wastewater treatment efficiency. Water research. 2017;108:401-411.
  10. Li L, Hur M, Lee J-Y, Zhou W, Song Z, Ransom N, et al. A systems biology approach toward understanding seed composition in soybean. BMC Genomics. 2015;3(16):1-18.
  11. Ahmed F, Zhou W, Schenk PM. Pavlova lutheri is a high-level producer of phytosterols. Algal Research. 2015;10:210-7.
  12. Zhang D, Zhu M, Zhou W, Yani S, Zhang Z, Wu J. A TwoPhase Anaerobic Digestion Process for Biogas Production for Combined Heat and Power Generation for Remote Communities. Handbook of Clean Energy Systems.
  13. Lu Y*, Zhou W*, Wei L, Li J, Jia J,  Li M, Smith SM, Xu J: Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnology for Biofuels. 2014 7(1):81 (Contribute equally).
  14. Funnekotter B, Kaczmarczyk A, Turner SR, Bunn E, Zhou W, Smith SM, Flematti G,  Mancera RL: Acclimation-induced changes in cell membrane composition and influence on cryotolerance of in vitro shoots of native plant species. Plant Cell, Tissue and Organ Culture. 2013 114: 83-96.
  15. Keech O, Zhou W, Fenske R, Colass-des-Francs-Small C, Bussell J, Badger MR, Smith SM: The genetic dissection of a short-term response to low CO(2) supports the possibility for peroxide-mediated decarboxylation of photorespiratory intermediates in the peroxisome. Mol. Plant. 2012 5(6):1413-6.
  16. Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH: Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol. 2011 156(4):1706-24.
  17. Schmidt MA, Barbazuk WB, Sandford M, May G, Song Z, Zhou W, Nikolau BJ, Herman EM: Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome Plant physiology 2011, 156(1): 330-345.
  18. Che P, Bussell JD*, Zhou W*, Estavillo GM, Pogson BJ, Smith SM: Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 2010, 3(141):1-12. (*Contribute equally).
  19. Pracharoenwattana I, Zhou W, Smith SM: Fatty acid beta-oxidation in germinating Arabidopsis seeds is supported by peroxisomal hydroxypyruvate reductase when malate dehydrogenase is absent. Plant Mol Biol 2010, 72(1-2):101-109.
  20. Pracharoenwattana I, Zhou W, Keech O, Francisco PB, Udomchalothorn T, Tschoep H, Stitt M, Gibon Y, Smith SM: Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant J 2010, 62(5):785-795.
  21. Wiszniewski AA, Zhou W, Smith SM, Bussell JD: Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins. Plant Mol Biol 2009, 69(5):503-515.
  22. Nes WD, Zhou W, Ganapathy K, Liu J, Vatsyayan R, Chamala S, Hernandez K, Miranda M: Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Arch Biochem Biophys 2009, 481(2):210-218.
  23. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM: The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 2009, 284(35):23415-23425.
  24. Li J, Francisco P, Zhou W, Edner C, Steup M, Ritte G, Bond CS, Smith SM: Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein. Arch Biochem Biophys 2009, 489(1-2):92-98.
  25. Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR: Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 2008, 148(2):786-795.
  26. Zhou W, Cross GA, Nes WD: Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. J Lipid Res 2007, 48(3):665-673.
  27. Zhou W, Lepesheva GI, Waterman MR, Nes WD: Mechanistic analysis of a multiple product sterol methyltransferase implicated in ergosterol biosynthesis in Trypanosoma brucei. J Biol Chem 2006, 281(10):6290-6296.
  28. Nes WD, Sinha A, Jayasimha P, Zhou W, Song Z, Dennis AL: Probing the sterol binding site of soybean sterol methyltransferase by site-directed mutagenesis: functional analysis of conserved aromatic amino acids in Region 1. Arch Biochem Biophys 2006, 448(1-2):23-30.
  29. Lepesheva GI, Zaitseva NG, Nes WD, Zhou W, Arase M, Liu J, Hill GC, Waterman MR: CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B' helix defines substrate preferences of sterol 14alpha-demethylase. J Biol Chem 2006, 281(6):3577-3585.
  30. Zhou W, Song Z, Liu J, Miller MB, David Nes W: 24-Thiacycloartanol, a potent mechanism-based inactivator of plant sterol methyltransferase. Tetrahedron Letters 2004, 45(4):875-878.
  31. Song Z, Zhou W, Liu J, Nes WD: Mechanism-based active site modification of the soybean sterol methyltransferase by 26,27-dehydrocycloartenol. Bioorg Med Chem Lett 2004, 14(1):33-36.
  32. Nes WD, Jayasimha P, Zhou W, Kanagasabai R, Jin C, Jaradat TT, Shaw RW, Bujnicki JM: Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis. Biochemistry 2004, 43(2):569-576.
  33. Lepesheva GI, Nes WD, Zhou W, Hill GC, Waterman MR: CYP51 from Trypanosoma brucei is obtusifoliol-specific. Biochemistry 2004, 43(33):10789-10799.
  34. Kanagasabai R, Zhou W, Liu J, Nguyen TT, Veeramachaneni P, Nes WD: Disruption of ergosterol biosynthesis, growth, and the morphological transition in Candida albicans by sterol methyltransferase inhibitors containing sulfur at C-25 in the sterol side chain. Lipids 2004, 39(8):737-746.
  35. Zhou W, Nes WD: Sterol methyltransferase2: purification, properties, and inhibition. Arch Biochem Biophys 2003, 420(1):18-34.
  36. Nes WD, Song Z, Dennis AL, Zhou W, Nam J, Miller MB: Biosynthesis of phytosterols. Kinetic mechanism for the enzymatic C-methylation of sterols. J Biol Chem 2003, 278(36):34505-34516.
  37. Zhou W, Nguyen TT, Collins MS, Cushion MT, Nes WD: Evidence for multiple sterol methyl transferase pathways in Pneumocystis carinii. Lipids 2002, 37(12):1177-1186.
  38. Nes WD, Zhou W, Dennis AL, Li H, Jia Z, Keith RA, Piser TM, Furlong ST: Purification, characterization and catalytic properties of human sterol 8-isomerase. Biochem J 2002, 367(Pt 3):587-599.
  39. Zhou W, Nes WD: Stereochemistry of hydrogen introduction at C-25 in ergosterol synthesized by the mevalonate-independent pathway. Tetrahedron Letters 2000, 41(16):2791-2795.
  40. Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR: Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 2000, 12(6):853-870.
  41. Nes WD, McCourt BS, Zhou W, Ma J, Marshall JA, Peek LA, Brennan M: Overexpression, purification, and stereochemical studies of the recombinant (S)-adenosyl-L-methionine: delta 24(25)- to delta 24(28)-sterol methyl transferase enzyme from Saccharomyces cerevisiae. Arch Biochem Biophys 1998, 353(2):297-311.
  42. Yusen T, McCourt BS, Guo D-a, Mangla AT, Zhou W, Jenkins MD, Wen Z, Lopez M, Nes WD: Stereochemical Features of C-methylations on the Path to [Delta]24(28)-Methylene and [Delta]24(28)-Ethylidene Sterols: Studies on the Recombinant Phytosterol Methyl Transferase from Arabidopsis thaliana. Tetrahedron Letters 1997, 38(35):6115-6118.